Limit Distribution of Distances in Biased Random Tries
نویسنده
چکیده
The trie is a sort of digital tree. Ideally, to achieve balance, the trie should grow from an unbiased source generating keys of bits with equal likelihoods. In practice, the lack of bias is not always guaranteed. We investigate the distance between randomly selected pairs of nodes among the keys in a biased trie. This research complements that of Christophi and Mahmoud (2005); however, the results and some of the methodology are strikingly different. Analytical techniques are still useful for moments calculation. Both mean and variance are of polynomial order. It is demonstrated that the standardized distance approaches a normal limiting random variable. This is proved by the contraction method, whereby the limit distribution is shown to approach the fixed-point solution of a distributional equation in the Wasserstein metric space.
منابع مشابه
Study of Random Biased d-ary Tries Model
Tries are the most popular data structure on strings. We can construct d-ary tries by using strings over an alphabet leading to d-ary tries. Throughout the paper we assume that strings stored in trie are generated by an appropriate memory less source. In this paper, with a special combinatorial approach we extend their analysis for average profiles to d-ary tries. We use this combinatorial appr...
متن کاملDistribution of Inter-Node Distances in Digital Trees
We investigate distances between pairs of nodes in digital trees (digital search trees (DST), and tries). By analytic techniques, such as the Mellin Transform and poissonization, we describe a program to determine the moments of these distances. The program is illustrated on the mean and variance. One encounters delayed Mellin transform equations, which we solve by inspection. Interestingly, th...
متن کاملThe Oscillatory Distribution of Distances in Random Tries
We investigate ∆n, the distance between randomly selected pairs of nodes among n keys in a random trie, which is a kind of digital tree. Analytical techniques, such as the Mellin transform and an excursion between poissonization and depoissonization, capture small fluctuations in the mean and variance of these random distances. The mean increases logarithmically in the number of keys, but curio...
متن کاملCompact Suffix Trees Resemble PATRICIA Tries: Limiting Distribution of the Depth
Suffix trees are the most frequently used data structures in algorithms on words. In this paper, we consider the depth of a compact suffix tree, also known as the PAT tree, under some simple probabilistic assumptions. For a biased memoryless source, we prove that the limiting distribution for the depth in a PAT tree is the same as the limiting distribution for the depth in a PATRICIA trie, even...
متن کاملLimit distribution of the degrees in scaled attachment random recursive trees
We study the limiting distribution of the degree of a given node in a scaled attachment random recursive tree, a generalized random recursive tree, which is introduced by Devroye et. al (2011). In a scaled attachment random recursive tree, every node $i$ is attached to the node labeled $lfloor iX_i floor$ where $X_0$, $ldots$ , $X_n$ is a sequence of i.i.d. random variables, with support in [0,...
متن کامل